Posted under » Python Data Analysis on 12 June 2023
From Dataframe intro.
If your data sets are stored in a file, Pandas can load them into a DataFrame.
import pandas as pd df = pd.read_csv('data.csv') print(df) Duration Pulse Maxpulse Calories 0 60 110 130 409.1 1 60 117 145 479.0 2 60 103 135 340.0 .. ... ... ... ... 167 75 120 150 320.4 168 75 125 150 330.4 [169 rows x 4 columns]
Or if there is a first col and you want to index it.
df = pd.read_csv('data.csv', index_col ="stage")
Take note the the csv must be comma delimited and not ;. It is a good idea to fill the data with NULL so that it can be filled or replaced.
If you want to add new columns to your dataframe.
Big data sets are often stored, or extracted as JSON. From file 'data.json'
import pandas as pd df = pd.read_json('data.json') print(df.to_string())
Load a Python Dictionary into a DataFrame
data = { "Duration":{ "0":60, "1":60, "2":60, "3":45, "4":45, "5":60 }, "Pulse":{ "0":110, "1":117, "2":103, "3":109, "4":117, "5":102 }, "Maxpulse":{ "0":130, "1":145, "2":135, "3":175, "4":148, "5":127 }, "Calories":{ "0":409, "1":479, "2":340, "3":282, "4":406, "5":300 } } df = pd.DataFrame(data) print(df)
cont... Analyzing DataFrames