Posted under » Python Data Analysis on 22 May 2024
Booleans are just 0 or 1. It look like this in pandas.
>>> mask = songs3 > songs3.median () >>> mask Paul True John True George False Ringo False Name: counts , dtype: bool
In Numpy we can do it in multiple dimensions.
import numpy as np a = np.array([[2, 4],[2, 5],[2, 4]]) b = np.array([[2, 4],[2, 4],[3, 4]]) c = np.array_equal(a, b) print(c) False print(a == b) [[ True True] [ True False] [False True]]
If you have a matching boolean array, then you will get true.
f = np.array([[True, True],[True, False],[False, True]]) d = (a == b) print(np.array_equal(d, f)) True
Sometimes, you need not be 100% equal, you can use either sum or np.count_nonzero to adjust the percentage of `equalness'.
>>> import numpy as np >>> f = np.array([[1, 1], [1, 0], [0, 1]], dtype=bool) >>> f array([[ True True] [ True False] [False True]]) >>> f.sum() 4 >>> np.count_nonzero(f) 4
If you need to be equal, then you can Slice the array.